Dilated and hypertrophic cardiomyopathy mutations in troponin and alpha-tropomyosin have opposing effects on the calcium affinity of cardiac thin filaments.

نویسندگان

  • Paul Robinson
  • Peter J Griffiths
  • Hugh Watkins
  • Charles S Redwood
چکیده

Dilated cardiomyopathy and hypertrophic cardiomyopathy (HCM) can be caused by mutations in thin filament regulatory proteins of the contractile apparatus. In vitro functional assays show that, in general, the presence of dilated cardiomyopathy mutations decreases the Ca(2+) sensitivity of contractility, whereas HCM mutations increase it. To assess whether this functional phenomenon was a direct result of altered Ca(2+) affinity or was caused by altered troponin-tropomyosin switching, we assessed Ca(2+) binding of the regulatory site of cardiac troponin C in wild-type or mutant troponin complex and thin filaments using a fluorescent probe (2-[4'-{iodoacetamido}aniline]-naphthalene-6-sulfonate) attached to Cys35 of cardiac troponin C. The Ca(2+)-binding affinity (pCa(50)=6.57+/-0.03) of reconstituted troponin complex was unaffected by all of the HCM and dilated cardiomyopathy troponin mutants tested, with the exception of the troponin I Arg145Gly HCM mutation, which caused an increase (DeltapCa(50)=+0.31+/-0.05). However, when incorporated into regulated thin filaments, all but 1 of the 10 troponin and alpha-tropomyosin mutants altered Ca(2+)-binding affinity. Both HCM mutations increased Ca(2+) affinity (DeltapCa(50)=+0.41+/-0.02 and +0.51+/-0.01), whereas the dilated cardiomyopathy mutations decreased affinity (DeltapCa(50)=-0.12+/-0.04 to -0.54+/-0.04), which correlates with our previous functional in vitro assays. The exception was the troponin T Asp270Asn mutant, which caused a significant decrease in cooperativity. Because troponin is the major Ca(2+) buffer in the cardiomyocyte sarcoplasm, we suggest that Ca(2+) affinity changes caused by cardiomyopathy mutant proteins may directly affect the Ca(2+) transient and hence Ca(2+)-sensitive disease state remodeling pathways in vivo. This represents a novel mechanism for this class of mutation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dilated and Hypertrophic Cardiomyopathy Mutations in Troponin and -Tropomyosin Have Opposing Effects on the Calcium Affinity of Cardiac Thin Filaments

Dilated cardiomyopathy and hypertrophic cardiomyopathy (HCM) can be caused by mutations in thin filament regulatory proteins of the contractile apparatus. In vitro functional assays show that, in general, the presence of dilated cardiomyopathy mutations decreases the Ca sensitivity of contractility, whereas HCM mutations increase it. To assess whether this functional phenomenon was a direct res...

متن کامل

Altered cardiac troponin T in vitro function in the presence of a mutation implicated in familial hypertrophic cardiomyopathy.

Familial hypertrophic cardiomyopathy (HCM) can be caused by dominant missense mutations in cardiac troponin T (TnT), alpha-tropomyosin, C-protein, or cardiac myosin heavy chain genes. The myosin mutations are known to impair function, but any functional consequences of the TnT mutations are unknown. This report describes the in vitro function of troponin containing an IIe91Asn mutation in rat c...

متن کامل

Hypertrophic cardiomyopathy.

Hypertrophic cardiomyopathy is a multigenetic cardiac disease with autosomal dominant pattern of inheritance and incomplete penetrance, with the exclusion of those cases caused by mutations in the mitochondrial genome. The disease is usually caused by mutations in several sarcomeric contractile protein genes. Mutations have been found in four genes that encode components of the thick filament: ...

متن کامل

Differential interactions of thin filament proteins in two cardiac troponin T mouse models of hypertrophic and dilated cardiomyopathies.

AIM Mutations in a sarcomeric protein can cause hypertrophic cardiomyopathy (HCM) or dilated cardiomyopathy (DCM), the opposite ends of a spectrum of phenotypic responses of the heart to mutations. We posit the contracting phenotypes could result from differential effects of the mutant proteins on interactions among the sarcomeric proteins. To test the hypothesis, we generated transgenic mice e...

متن کامل

Human actin mutations associated with hypertrophic and dilated cardiomyopathies demonstrate distinct thin filament regulatory properties in vitro.

Two cardiomyopathic mutations were expressed in human cardiac actin, using a Baculovirus/insect cell system; E99K is associated with hypertrophic cardiomyopathy whereas R312H is associated with dilated cardiomyopathy. The hypothesis that the divergent phenotypes of these two cardiomyopathies are associated with fundamental differences in the molecular mechanics and thin filament regulation of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Circulation research

دوره 101 12  شماره 

صفحات  -

تاریخ انتشار 2007